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A model procedure has been proposed to predict the yield strength of binary blends of thermoplastics on 
the basis of the information on the continuity of phases acquired from the Hill model for the elastic 
properties of two-component systems. Utilizing this information in an equivalent box model and assuming 
either 'perfect' or 'zero' interracial adhesion, the upper and lower bounds of the yield strength can be 
calculated. The upper bound may be close to (but lower than) the dependence corresponding to the additivity 
(rule of mixtures). The lower bound passes through a minimum at a composition of about 50/50 (by 
volume), which corresponds to the phase-inversion point in the Hill model. The minimum yield strength 
is linked to the minimum of the sum of the continuity parameters of the components in the blends. Predicted 
dependences of the yield strength on the blend composition are in reasonable accord with the experimental 
data for blends with good or poor interfacial adhesion. If the model is to be employed for the appraisal 
of the interracial adhesion in polymer blends, other factors affecting the phase structure should be taken 
into account, e.g. relative melt viscosities, particle size, orientation during processing, cavitation, etc. 
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INTRODUCTION 

Predictions of mechanical properties of multicomponent 
materials are very valuable because unnecessary experi- 
ments can be avoided, or at least their number can be 
reduced. At present, the modulus of various multiphase 
systems can be predicted T M  with reasonable accuracy 
owing to the fact that there exist numerous models 
relating the modulus to particular phase structure~ so 
that a suitable model can usually be found. (Conversely, 
if the prediction based on a specific model fits the 
experimental data, one can expect that the structure of 
the studied material is similar to that assumed in the 
model that is being usedS'6.) The yield strength of 
particulate composites is frequently predicted by using 
relatively simple formulae 2'7-9, which take into account 
the reduction of the effective cross-section of the matrix 
due to the presence of poorly adhering particles of 
dispersed phase(s). Pukanszky and coworkers s'9 have 
shown that various degrees of interfacial adhesion can 
be explicitly encompassed by means of an exponential 
term. These models have also been used for blends 2'5's-11, 
but none of them can estimate the yield strength in the 
region of the inversion or the co-continuity of the phases 
which is frequently encountered in blends of thermo- 
plastics. Moreover, it is not clear how the yield strength 
of blends will depend on their composition in the case 
of 'perfect' interfacial adhesion. As is generally known, it 
is difficult to anticipate the impact properties of polymer 
blends because of the complexity of the processes 
underlying the fracture phenomena (associated, e.g. with 
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multiple crazing or shear yielding 2'12'13) and because of 
their sensitivity to particular aspects of the various 
structures. 

There is considerable experimental evidence 2'12-15 to 
show that the phase structure of polymer blends 
simultaneously affects their elastic, yield and ultimate 
properties, although these properties are related to the 
phase structure in very different ways. For example, 
matrix phase continuity markedly affects all of the 
mechanical properties of polycarbonate (PC) blends1 o, 16-21 
with poly(styrene-co-acrylonitrile) (PSAN) or poly(methyl 
methacryl(ate) (PMMA). This is because the PC matrix 
is clearly superior to that of the PSAN or PMMA as far 
as tensile and impact strengths are concerned. The 
ultimate properties of these blends decrease with 
decreasing matrix volume fraction and deteriorate at 
compositions where the PC phase loses its continuity, 
thus confirming the fact that the degree of the matrix 
phase continuity is of primary importance. 

The continuity of the components (which are frequently 
identical with the phases) in these blends is routinely but 
only qualitatively documented by scanning or trans- 
mission electron microscopy. Therefore, other ways are 
sought which can supplement the microscopic evidence 
and provide at least semiquantitative data on phase 
structures. For this purpose, the existing models of the 
elastic properties of particulate systems can be exploited. 
In our previous paper 6 on polyethylene (PE)/elastomer/ 
polypropylene (PP) ternary blends, comparison of the 
model modulus calculations with the experimental data 
supported the opinion that the ethylene-propylene (EPR) 
elastomer separated the PP and PE phases, regardless of 
their ratio in the blends. (The phase structure of ternary 

0032-3861/94/17/36314)7 
(~ 1994 Butterworth-Heinemann Ltd POLYMER Volume 35 Number 17 1994 3631 



Yield strength of blends." J. Kolaf/k 

systems is dictated by the surface energies of the 
components22-26.) Using similar models and some 
simplifying assumptions, we were able to approximately 
evaluate the percentage of filler particles encapsulated by 
the elastomer in polypropylene/elastomer/filler ternary 
composites 26-2s. In our more recent work 21, we tried to 
quantify the differences in the matrix phase continuity, 
Cm, between (i) two-phase blends (where phase inversion 
takes place at around the 50/50 volume ratio) and (ii) 
three-phase blends (containing two minority phases 
separately dispersed in a matrix) with the aid of the 
Hill 12'29 and Kerner-Nielsen 2'4 equations, respectively, 
for the shear moduli of these systems. The very limited 
number of available experimental data indicated some 
correlation between Cm and the tensile energy to break or 
strain at break, which is in conformity with earlier 
observations 10,16-1 s. 

As polymer blends represent one of the most 
cost-effective ways of upgrading existing polymers, it is 
desirable to foresee the limits of their mechanical 
properties, such as modulus, yield strength, tensile 
strength, tensile energy to break, etc., which can 
be achieved for the systems under consideration. The 
objective of this paper is to utilize the data on the 
continuity of phases (cf. ref. 21) implicitly comprised in 
the Hill model 12'29 (predicting the modulus of two- 
component systems) for the calculation of the upper and 
lower bounds of the yield strength of binary blends of 
thermoplastics over the whole range of compositions. 
These bounds are tentatively related to the (i) 'perfect' or 
(ii) 'zero' interfacial adhesion between components in the 
'equivalent box model' employed in this paper. 

MODEL CONSIDERATIONS 

Polymer blends consisting of immiscible (or partly 
miscible) components are typical isotropic heterogeneous 
materials. Their mechanical properties depend not only 
on the volume fractions and the respective properties of 
the matrix and other components, but also on phase 
structure, continuity of phases, interfacial adhesion, and 
other factors. To illustrate the term 'phase continuity', 
we can refer to the well known parallel and series models 
(Figure 1), which are sometimes used as first approximations 
of the upper and lower bounds of various mechanical 
properties of isotropic heterogeneous materials, e.g. 
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Fig~e 1 Parallel (left) and series (right) models for the coupling of 
components in binary blends 

modulus 3A1'12'3°'31, yield strength l°,11,ls,31,a2, tensile 
strength TM, etc. The parallel coupling of components 
implies that (i) the strain of all of the phases is equal (the 
isostrain model) and (ii) the contribution of each phase 
to the final value of a certain mechanical property is 
given by the rule of mixtures. The constituent phases are 
continuous in the direction of the acting force and 
respond to loading in the same way as the 'neat' parent 
materials. Therefore, the phase continuity 21, %, of each 
phase can be considered as being equal to 1. Any line of 
force passes through only one phase and does not cross 
any interface; in this direction, therefore, the mechanical 
properties of the system are independent of the interfacial 
adhesion. 

The lower bound of the above mentioned mechanical 
properties is given by the series coupling of the 
components (Figure 1, right) where all lines of force pass 
through all phases which are discontinuous in the 
direction of the acting force (isostress model). Therefore, 
the continuity of any phase in the direction of the acting 
force can be regarded as being equal to 0. The 
contributions of the individual phases to a system 
property are given by the inverted rule of mixtures. As 
all stress (load) is transmitted via the interfaces, interfacial 
adhesion between the constituents is of primary importance. 
Obviously, if a mechanical property of one of the 
components, or the adhesion at any interface approaches 
a 'zero' value, the resulting property of the series system 
drops to zero. 

Equivalent box model 
The models visualized in Figure 1 are adequate for, 

e.g. orthotropic laminae, multilayer materials, etc., some 
of the mechanical properties of which are habitually 
described (in a certain direction) by the rule of 
mixtures 1'2. The mechanical properties of isotropic 
heterogeneous materials cannot be accurately represented 
by such simple models, and somewhat more complex 
models are needed which combine the parallel and series 
coupling of the various components 2'3'30,31,33-35. Although 
such a combined model does not correspond to the actual 
structure of a blend, its mechanical response to loading 
is equivalent to that of the modelled blend. For 
two-component blends, we can tentatively introduce an 
'equivalent box model' (EBM), as visualized in Figure 2. 
In this model, each block has the mechanical properties 
of one of the blend constituents. The blocks indicate 
which fractions of each component can be regarded as 
being coupled in parallel or in series in relation to the 
acting force. Thus, an EBM consists of both a parallel 
branch and a series branch, which are themselves coupled 
in parallel. 

Equivalent mechanical models furnish a convenient 
framework for systematic phenomenological descriptions 
of blend behaviour but they do not provide any 
prediction of mechanical properties which is based 
on the knowledge of the volume fractions and the 
respective properties of the constituents. Their adjustable 
parameters have to be determined by means of a fitting 
procedure, employing data from other sources, i.e. 
experiments, model calculations, etc. To evaluate all of 
the volume fractions encountered in the EBM, we will 
use values for the elastic moduli for the two-phase blends 
provided by the 'self-consistent' model, as proposed by 
Hill 29. The reason for this procedure is that the EBM 
can be viewed as a more versatile model as it allows us 
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Figure 2 Equivalent box models for binary blends with compositions (by volume) of 50/50 (a) and 60/40 (b) 

to distinguish between good and poor adhesion in the 
course of yielding. Thus, we will tentatively employ the 
EBM as a 'mixing rule' for the calculations of yield 
strength because this model expresses, in a similar way 
to the above cited models 2'7-9'11 for yield strength, the 
load bearing fraction of the components and their 
contribution to stress transmission. It is to be noted that, 
in this way, the validity of the EBM is empirically 
extended beyond the linearity limit. Although the yield 
point is situated on the stress-strain curves just beyond 
the linearity limit, yielding is associated with the initiation 
of plastic deformation. 

As can be seen in Figure 2, four volume fractions have 
to be known for the EBM, of which, however, only two 
are independent; thus the EBM is a two-parameter model. 
The fractions of either phase coupled in parallel (subscript 
p) or in series (subscript s) are given as follows: 

vlp=vlC1 vl~=vl(1 -C1)  (la) 

/)2p ~"/)2C2 /)2s = v2(1 - -  C2) (lb) 

where the phase continuity parameter, C1 (or C2), 
introduced in a previous paper 21, is identified with that 
fraction of the component 1 or 2 (present in a volume 
unit of the blend) which can be considered as being 
coupled in parallel to the acting force. The following 
retlationships hold for the volume fractions in the 
EBM: 

/)p ~ / )  lp "[- D2p /)s : f) 1 s "JI-/)2s 

f31 : t)lp Jr- f31s f)2 : f)2p "~-/)2s 

vl +v2 = Vp+ vs= 1 (2) 

The modulus of the parallel or series branch is 
expressed by the following equations: 

G p :  (GlVlp  q- G2v2p)/V p (3a) 

G~ = v~/[(v 1 ~/G 1) + (v2~/G2)] (3b) 

The modulus of the two-component blends is then given 
as follows: 

G b : (Gll) lp "4- G2v2v) + {vs/[(vls/G1) + (v2s/G2)]}v, (4) 

In order to make the calculation of C1 (or C2) simpler, 
we can assume that the shear modulus G1 of component 
1 is much higher than the shear modulus G2 of component 
2 (or vice versa). Obviously, the phase structure and the 
continuity of the components in a solid blend are 
independent of the ratio Gt/G2, which can be controlled 
(over a certain range) by changes in temperature. The 
contribution G2V2v of that part of component 2 which is 
coupled in parallel, plus the contribution of the whole 
series branch (see Figure 2), to the modulus of the EBM 
are then negligible, in comparison to the contribution 
Glvlp of component 1. Therefore, Glf) lp (or G2f)2p ) c an  
be set equal to the calculated modulus G~b (or G2b ), which 
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characterizes the stiffness of the component 1 (or 2) 
contained in a volume unit of the blend: 

G l b  ---- G11)lp ~- G1/) IC 1 (5a) 

and in an analogous fashion: 

G2b = G202p = G2/)2C 2 (5b) 

To complete the calculation of the volume fractions, the 
values of G1b or G2b need to be determined. 

Modulus of two-component blends 
The modulus G b of two-component blends can be 

calculated by means of the equation derived by Hi1129: 

VlK1/(K1 + 4Gb/3) + v2K2/(K 2 + 4Gb/3 ) 

+ 5VlG2/(Gb- G2) + 5v2G1/(Gb- Gx) + 2 = 0 (6) 

where the indices 1 and 2 stand for the individual 
components and K is the bulk modulus. It is to be noted 
that this equation encompasses the entire range of blend 
compositions, including the phase inversion. Thus 
equation (6) implicitly provides unique information on 
the continuity of the phases in binary blends. However, 
the phase inversion is assumed to occur at around the 
50/50 (volume) ratio of the components and cannot be 
adjusted. In real binary blends, the phase inversion 
and co-continuity may occur at somewhat different 
compositions of the components 36'37. 

Assuming Ga >>G2, the calculated values of Gb can be 
identified with G~b, which allows us to calculate C~ by 
means of equation (5a) and Vlp and vls by means of the 
relationships given in equation (la). As the components 
are interchangeable in the Hill model, the dependences 
of v~p (or v~s) and V2p (or v2s) on blend composition will 
be symmetrical. Thus, the calculated dependences given 
in Fioure 3 are quite versatile for blends undergoing a 
phase inversion at the 50/50 (volume) ratio. For these 
model calculations, we used values for G1 and G2 of 
1 GPa and 2 MPa, respectively; assuming values for the 
Poisson ratios of v~=0.3 and v2=0.4995, the bulk 
modulus K=(2/3)G(l+v)/(1-2v) assumes values of 
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Figure 3 Volume fractions of each phase, coupled in parallel or in 
series, as functions of composition in two-component blends 

K1=2.17 and K 2 = 2 G P a ,  respectively (cf. ref. 38). 
Although we are concerned with model calculations, we 
have selected these representable values, which were 
found or calculated for PC/PMMA blends ~° at 125°C, 
in order to achieve reasonable interrelationships between 
the constants of the material. 

Model calculations of yield strenoth 
In general, the models predicting the elastic properties 

of multicomponent particulate systems assume perfect 
adhesion between the phases. As elastic properties are 
measured at very low strains, typically below 1%, so as 

t o  remain in the region of a linear stress-strain 
relationship, low stresses are applied so that almost all 
systems are apparently characterized by a good interfacial 
adhesion. However, the situation may change profoundly 
at higher deformations (3-5%), when a tensile stress 
inducing yielding and plastic deformation is achieved. 
Two limiting cases, corresponding to the upper and lower 
bounds, can be distinguished: (i) the interracial adhesion 
is strong enough to transmit an acting stress between the 
constituents so that the series branch of the EBM also 
contributes, comparably with the parallel branch, 
towards the final value of the yield strength; (ii) the 
interracial adhesion is so weak that debonding (dewetting) 
occurs between the fractions of the constituents coupled 
in series. In this case, the series branch does not contribute 
to the resulting yield strength, which is therefore 
determined only by the parallel branch. 

With a knowledge of the volume fractions in the EBM, 
we can employ the model for making tentative 
calculations of the yield strength, Syb, of two-component 
blends under the conditions as explained above. As the 
ratio G1/G2, used in the previous calculations, is much 
higher than the ratios Syx/Sy2 of the yield strength values 
encountered in any pair of common thermoplastics, the 
accuracy of the volume fractions given in Fioure 3 is fully 
sufficient for these yield strength calculations. Since, by 
definition, each block (ideally) has the mechanical 
properties of one of the constituents, the EBM may be 
attempted for the calculation of blend properties only in 
such cases in which the properties of the constituents are 
not affected by mixing, i.e. they are identical with the 
properties of the parent polymers. If the mixing accounts 
for a relevant change in the properties of a component 
(e.g. due to changes in crystallinity), or for a 'synergistic' 
effect, then the EBM is not applicable. To obtain formulae 
for the lower and upper bounds of the yield strength for 
characterizing binary blends of thermoplastics, we can 
employ equation (4), where the yield strengths of the 
components, Syx and Sy2, can be formally substituted for 
G~ and G2, respectively: 

Sy b_ = SylDlp "71- Sy2D2p (7) 

Syb+ = (Syl 1.)lp --[- Sy2u2p ) + {I)s/[(Uls/Syl)  -3 !- (12s/Sy2)]}i) s 

(8a) 
However, when two components differing in yield 

strength are coupled in series, it may be expected that 
the system will yield at strengths of Syl or Sy2, whichever 
is the lower. Thus, if Sy x < Sy 2, equation (8a) will assume 
the following form: 

Sy b + = (Sy 1/31 p -~- Sy 21) 2 p) Jr- Sy 1 Us (8 b) 

which seems to be more realistic. 
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Figure 4 Comparison of experimental and calculated dependences 
of yield and tensile strength on composition in a two-component 
blend; upper bound of yield strength of polycarbonate/poly(methyl 
methacrylate) blends is calculated by means of equations (8a) and (8b), 
while lower bounds of yield or tensile strength of polypropylene/ 
poly(vinyl chloride) blends are calculated from equation (7). Experimental 
data points are taken from refs 10, 39 and 40 
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Figure 6 Comparison of calculated upper and lower bounds of yield 
strength of low-density polyethylene/high-density polyethylene blends 
with experimental data4°,42: dashed, continuous, dotted, and dash-and- 
dot lines represent the results obtained by using equations (9), (8a), (8b), 
and (7), respectively 

RESULTS AND DISCUSSION 

The values of the yield strength provided by the EBM 
are compared with the corresponding experimental 
data 1°'39-42 in Figures 4-6. As can be seen in Figure 4, 
the values obtained for the yield strengths of the 
polycarbonate and poly(methyl methacrylate) components 
are almost identical, although the mechanisms of yielding 
are different 13. When Syl and St2 are similar to each 
other, the upper bounds, as derived from equations (8a) 
and (8b), coincide and, moreover, cannot be distinguished 
from the additivity (linear interpolation) represented by 
the rule of mixtures: 

Sybr m = Syl l )  1 -]- Sy2U 2 (9) 

Therefore, we can explain the simplified empirical 
assumption made earlier 1°'1~'1s'32 that equation (9) is 
valid for the yield strength of binary blends in the ease 
of good interracial adhesion. (In principle, the rule of 
mixtures holds for the structures visualized in Figure 1 
and cannot be valid for isotropic heterogeneous 
materials.) With an increasing difference between Sy~ and 
Sy2, resulting differences between equations (9), (8a), and 
(8b) are bound to arise (see Figures 5 and 6). Nevertheless, 
the upper bound fits the experimental data for 
P C / P M M A  blends very well (see Figure 4), which clearly 
proves that a strong interracial adhesion has been 
achieved, as a result of partial miscibility of the 
constituentsX°. 

The lower bound is expected to be adequate for systems 
with very poor  interracial adhesion. Figures 4 and 5 
show that the yield strength in poly(vinyl chloride) 
(PVC)/polypropylene and polycarbonate/polypropylene 
blends follows quite well the calculated dependence. It is 

POLYMER Volume 35 Number 17 1994 3 6 3 5  



Yield strength of blends: J. Kolafik 

evident that the incompatibility (total immiscibility) 
between the pairs of dissimilar polymers actually prevents 
any interfacial adhesion. It is interesting to note that 
the predicted lower bound also reasonably fits the 
experimental data obtained for the tensile strength of 
PP/PVC blends. Thus, it seems that the EBM might also 
be applicable for the tensile strength of binary blends 
with poor interfacial adhesion. Similarly enough, equations 
based on the reduction of load-bearing cross-sections 
have also been tentatively used for the evaluation of 
tensile strength 2'39'4°. 

Figure 6 summarizes data 4°'42 on the yield strength of 
the blends consisting of low-density and high-density 
polyethylenes. As can be seen, the experimental data 
points are situated between the curves corresponding to 
equations (8a) and (9), which undoubtedly gives evidence 
of strong interfacial adhesion. However, relatively high 
values of the yield strength, clearly exceeding those 
obtainable from equation (8b), require analysis of possible 
factors which can affect the blend structure and cause 
the observed values to lie between the bounds (thus 
apparently indicating 'intermediate' interfacial adhesion) 
or above the upper bound. 

Obviously, all factors controlling the continuity of the 
individual phases are of primary importance. It is well 
known  36'37'a3 that the component with the lower 
(relative) viscosity in the melt shows a higher tendency 
to form the continuous or co-continuous phase than the 
component with the higher viscosity. If the component 
with the higher yield strength has a higher phase 
continuity than that calculated from the Hill model, then 
the experimental data will be situated above the 
calculated dependence, which holds for blends with both 
good or poor adhesion. Nevertheless, the yield strengths 
of binary blends which exceed the values rendered by 
the rule of mixtures 11 can hardly be understood without 
assuming some structural changes in the components as 
a result of blending. It should also be noted that the 
predicted minimum value of Syb- is shifted on the 
composition scale towards the component with a lower 
S r, even though the phase inversion point corresponds 
to a 50/50 (volume) ratio. 

Another interfering factor is the phase structure 
orientation during preparation of a test specimen, e.g. by 
injection moulding, which may cause the samples to no 
longer remain isotropic. A higher continuity of both 
phases in the direction of orientation will necessarily 
result in an increase in the yield strength in that direction, 
irrespective of the interfacial adhesion. Furthermore, as 
the stress necessary for the dewetting of the spherical 
particles embedded in a matrix is inversely proportional 
to the square root of the particle radius 44, a particular 
situation may occur in which the stress acting during the 
yielding process will cause dewetting of a certain fraction 
of the larger particles, while the smaller particles will 
remain bound to the matrix. In an analogous way, an 
increase in diameter of the particles due to the increase 
in volume fraction of the dispersed phase  39'4°'45-47 in 
the blend melt, or phase structure coarsening (the 
detrimental effect of which on mechanical properties has 
been previously pointed out24'48), etc., might lead to an 
increasing volume fraction of debonded particles in the 
system and thus cause a shift of the yield strength towards 
the lower bound. Another reason for a drop in yield 
strength may be cavitation of one of the phases. However, 
the detection and quantitative evaluation of these effects, 

as outlined above, which could be misinterpreted as 
changes in the interfacial adhesion, would be rather 
complex. 

CONCLUSIONS 

Information on the continuity of phases in two- 
component systems, which was obtained from the 
Hill model for elastic behaviour, was utilized in an 
equivalent box model in order to calculate the yield 
strength of the systems under the assumption of either 
(i) 'perfect' or (ii) 'zero' interfacial adhesion. These limits 
are tentatively identified with the upper and lower bounds 
of the yield strength of binary blends of thermoplastics. 
The degree of continuity of each constituent decreases 
with its decreasing fraction in the blends; the sum of these 
quantities passes through a minimum at the 50/50 
(volume) ratio composition, which is implicitly assumed 
in the Hill model as the phase inversion point. If the 
adhesion between the constituents is strong enough to 
transmit the yield stress, the resulting upper bound may 
be rather close to (but always lower than) the dependence 
calculated from the' rule of mixtures (additivity). In the 
case of poor adhesion, the fractions of both constituents 
formally coupled in series are ineffective in stress 
transmission as a result of interfacial debonding. 
Therefore, the lower bound shows a minimum close to 
the 50/50 composition. However, if the values of the yield 
strengths of the components are rather different, then the 
minimum is shifted on the composition scale towards the 
component with the lower strength. The predicted 
dependences are in good accord with the experimental 
data obtained for binary blends characterized by either 
strong or poor adhesion. 

When analysing the experimental data on the yield 
strengths with the aid of the EBM, possible interfering 
factors should be taken into account which may cause 
an increase in the measured values; namely (i) a higher 
phase continuity (than that calculated from the Hill 
model) of the component with the higher yield strength, 
due to its lower relative viscosity in the melt, or (ii) 
orientation of the phase structure in the processing stage, 
e.g. injection moulding. Moreover, as the stress necessary 
for dewetting of the spherical particles is inversely 
proportional to the square root of the particle radius 42, 
the measured yield strength may be affected by the 
particle size and its distribution, the increase in particle 
size with the increasing volume fraction of the dispersed 
component, coarsening of the phase structure due to 
annealing or reprocessing, etc. Obviously, the resulting 
shifts in the yield strength might be erroneously attributed 
to changes in the 'mean' adhesion. 
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